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Roland E. Lee

NG

ABSTRACT: ‘i combined experimental and analytical method for
obtaining the surface heat-transfer rate in a rocket nozzle .- ¢
ha&-boen developed at the Naval Ordnance Laboratory. This
method is particularly applicable to high energy rocket nozzle
flow where instrumentation directly on the flow surface is
impractical.

The method employs data of the temperature-versus-time history
of two points within the nozzle wall with one of them near the
surface of the nozzle. The temperature distribution between the
two points and the temperature of the nearby nozzle surface are
computed on the IBM 7090 using the implicit numerical solution
to the one-dimensional transient heat conduction equation. The
heat-transfer rate at the nozzle surface is then calculated from
the computed temperature gradient at the surface. Application
of this method to determine the heat-transfer rate at the throat
of a molybdenum insert in a conical solid propellant rocke* noz-
zle 1s presented. The nozzle was, operated at nominal chamber
conditions of 1150 psia and 25009 ,in the Johns Hopkins Univer-
sity Applied Physics Laboratory rocket tunnel facility. The
experimental technique is described.

The experimental data are compared with theoretical predictions
and other available experimental results. Good agreement is
obtained with turbuleant heat-transfer rates computed from the
numerical integration of the boundary-layer momentum equation.

U. S. NAVAL ORDNANCE LABORATORY
WHITE QAK, MARYLAND
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Heat Transfer to the Throat Region of a Solid Propellant
Rocket Nozzle

This report presents the results of a program to investigate
the applicability of existing heat-transfer theories to the
case of heat transfer involving combustion products such as in
a solid propellant rocket nozzle.
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SYMBOLS
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specific heat of gas at constant pressure
local convective heat-~transfer coefficient
reference thermal conductivity
temperature dependent thermal conductivity
Prandtl number
time rate of heat transfer per unit area
dimensionless radial coordinate = r/rx
gas constant
coordinate in radial direction
nozzle throat radius

transformed radial coordinate

identification of curve corresponding to higher Ty

data

identification of cur-s corresponding to lower To

data
temperature
transformed temperature

velocity

temperature dependent thermal diffusivity of

nozzle material

ratio of specific heats
density of gas

density of nozzle material
fraction of space increment AS
time

absclute viscosity of gas

v




Subscripts
a
J
s
o

1, 2, etc.

Superscripts

n

NOLTR 62-72

average fluid conditions

space reference in the radial direction
nozzle surface conditions

supply or stagnation conditioans

point identification for numerical solution

time reference

vi




NOLTR 62-72

INTRODUCTION -

The development of higher energy solid propellant rocket
motors heas produced a corresponding increase in the heat-transfer
rate from the exhaust gas to the motor components, and in turn
has raised the temperature level of these components. Near the
melting temperature of the components, heat must be removed in
order to prevent structural failure. More accurate predictions
of the quantity of heat transferred from the hot exhaust jet to
the internal structure will permit a more efficient design of
the motor and cooling system and will increase the probability
of a successful mission.

There are many simplified methods for computing the heat-
transfer rate from hot gases (refs. (1) through (6)), but little
experimental data were available at the start of this work to
support the accuracy of these methods when applied to combustion
products, such a8s in the case of solid propellant motors. An
important factor in experimental research is the difficulty of
accurately measuring temperatures which exceed the melting tem-
perature of thermocouple materials. The present report describes
a technigque, employing the implicit finite difference approxima-
tion of the transient heat conduction equation, to calculate the
heat fiow in the high-temperature region from the known tempera-
ture history in the low-temperature region wherse instrumentation
is practical. Only one-dimensional heat flow is considered in
the present analysis, and the method is applied to the flow in
the nozzle throat region where maximum heating occurs. The
computed heat-transfer rate in terms of Stanton number is com-
pared with several convective heat-transfer methods based on
both laminar and turbulent boundary-layer flow.

FORMULATION
Assuming axial symmetry, the general one-~-dimensional tran-

sient heat conduction equation in cylindrical coordinates with
variable thermal conductivity and specific heat is:

Q1%
Y !

-
Sk 5E) bk F ) - ae,

~
[
N

Equation (1) can be simplified by applying the fcllowing two
transformations to adjust for variable thermal conductivity and

geometry, respectively:
-

U=f X a7

<
/3

(2)
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and
S =/Mm R (3)

where r
/? = TR

Then equation (1) assumes the form:

°U (ﬁr*)d oU

FCh py 3T (4)
where <. = A;
b ————
Em Com

Equation (4) can be solved numerically using the implicit finite
difference approximation presented in reference (7) which states
that for any internal point, j, in the body at a particular
instant, n:

(277" _[(qﬂ-v;-)"”_ (- q_,)"yw,_ (R (TG
e

# 47 5
(25)2 45 as e (5)
where there are three unknown tempsratures; namely, U?i{,

n+1 n
an+1, and UJ—l' and one known temperature, Uj.

if the body is divided into m segments, then there will be
m equation (5)'s with m+2 unknowns. If two of these unknowns,
namely, the temperature history at the two boundaries, can be
determined experimentally, then the temperature field between
the two points can be computed by solving the m algebraic
equations wilh m unknowns. Likewise, the same procedure can be
used to extrapolate beyond ihe measured points toward the
surface. At the surface, the convection film coefficient, h,
can be computed from Newton's law of cooling and the Fourier heat-~
conduclion equation;

7)) = K AU

Reference (7) indicated the truncation error of the implicit
numerical solution_between the two given boundaries to be of the
order of AT + (AS)Z. The stability of the solution is independ-
ent of the values chosen for AT and AS in contrast with the
explicit solution, A general discussion of experimental and

2
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numerical accuracy will be presented in the results section.

The numerical solution of equation (5) for six internal
points was coded for computation on the IBM 7090 using time
increments of 0,1 second. An iterative procedure to compensate
for temperature variation of the thermal diffusivity was
incorporated in the mechanized solution. A tabulation of the
thermodynamic properties of the nozzle material, molybdenum, is
shown in Table 1. The temperature transformation of equation (2)
to compensate for temperature variation in thermal conductivity
is graphed in figure 1. The variation of the thermal diffusivity
witk transformed temperature of molybdenum is shown in figure 2.

EXPERIMENTAL PROCEDURE AND INSTRUMENTATION

Tests were conducted at the rocket tunnel facility of the
Applied Physics Laboratory, Johns Hopkins University, Maryland.
The nominal operating supply conditions were 1150 psia and
25009 which were produced by a standard double base, end burn-
ing ARP ten-second propellant prepared by the Allegany Ballistics
Laboratory. A detalled discussion of the facility and the flow
produced by this propellant is given in references (8) and (9).

The heat-transfer model, one of the standard nozzle config-
urations used at APL, consisted of a solid molybdenum throat
insert that was pressed into a conical steel nozzle., The
dimensions of the insert are 2.85 inches long and 0.68 inch-
thick at the throat with a convergence of 45 degrees and an
expansion angle of 12.5 degrees and throat radius of curvature
of 0.77 inch. The nozzle throat and exit diameters were 0.63
inch and 1.99 inches, respectively (see fig. 3).

The throat insert was instrumented with a total of 238
thermocouples in five axial locations and at the interface
between the molybdenum and steel as shown by the solid dots in
figvre 3. All the thermocouples were mounted in one plane pass-
ing through the nozzle axis. The thermocouples made from 30-
gage platinum and platinum-rhodium wires were mounted 1in the
radial planes in one-degree tapered molybdenum plugs as shown
in figure 4., The plugs were inscrted into mating holes which
bottomed at depths of .,010 inch from the gas flow surface (see
figure 4).

The thermocouples were anchored in one axial plane of the
plug and protruded approximately .00l inch above the surface of
the plug. The wires were threaded through a .062 inch diameter
hole drilled across the diameter of the plug and were led out of
the plug through a channel cut on the opposite face. Having the
#»ire along the diameter 18 a precaution to minimize any heat

3
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losses by conduction through the wire by extending a short seg-
ment of the wire along the assumed isotherms. The smallest
diameter of the plug was .25 inch and the potting agent was
Saureisen No. 76, These plugs were then lap-fitted tc the

throat insert to insure a good surface contact between each plug
and the insert. Thermocouples on the interface between the
molybdenum insert and steel shell were mounted into threaded
plugs which were screwed into place. The reference thermocouples
were formed with copper extension wires kept at room temperature.
The emf's of the thermocouples were recorded on a 50-Channel
Midwestern Direct Recording Oscillograph, Mcodel 602, The nozzle
inlet pressure was recorded with a Statham pressure transducer,
and the inlet temperature was measured with two unshielded

.020 inch diameter tungsten-iridium thermocouples. One of the
two thermocouples was connected to the Midwestern oscillograph,
while the other thermocouple and the pressure transducer werse
connected to Sanborn recorders,

The effect of electrical resistance of the thermocouple
lead-wires at elevated temperatures was consldered and measured
in an electric furnace under simulated test conditions. VWires
from the same lot and of the same lengths as those used for the
model instrumentation were calibrated against a standard thermo-
couple calibrated by the National Bureau of Standards, In
general, the change in resistance due to uncertainties in the
leads at ithese temperatures as shown in figure 5 is very small
compared to the nominal circuit resistance of 230 ohms. The
maximum error introduced in the final results is less than one
percent.

RESULTS

The characteristic pressure and temperature rise in the
combustion chamber is shown in figures 6 and 7, respectively.
The two independently measured chamber temperatures represented
by curves Toj and Tgg in figure 7 showed good initial temperature
agreement but departed by approximately ten percent toward the
end of the run. The higher temperature curve, Toj, measured on
the Midwestern oscillograph had a few saw-tooth type bursts
after five seconds duraiion as showun. The lowesi peak oif these
bursts was approximately four percent below the average. The
second temperature data, Top, Were lower and more irregular than
the To; data, and the lower and irregular Togz data appeared to
have been caused by the temporary insulation effect of non-
gaseous products deposited on the bare thermocouples. The
affect of this temperature difference in the hsat-transfer
results will be shown later,
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The maps of isotherms, determined from the data of the
thermocouples embedded in the throat insert at time intervals
of one, two, three, five, seven and ten seconds, are shown in
figures 8 through 10, respectively. The =lope of the isotherms
in the throat region indicates small axial heat flow. Graphical
evaluation of tho data showe the second derivative of the tem-
perature in the axial direction to be lesa than two percent of
the second derivative of the temperature in the radial direction.
Consequently, it is expected that the temperature and heat-
transfer rate at the throat surface can be computed with good
accuracy by the one-dimensional heat flow analysis previously
described. The computation was performed on the IBM 7090,

Figure 11 is a graph of the radial temperature distribution
in the nozzle throat plane. The symbols represent measured
temperatures at the location shown. The two temperature
boundaries used for the numerical solution were located at the
circular and triangular points. The lines plotted represent the
computed solution of the transient heat conduction equation at
the selected time intervals as described in Appendix A. The
heat-transfer rate at the surface was determined from the tem-
perature gradient at the surface. The computed surface tempera-
ture and heat flux durlng the run are shown in figures 12 and 13,
respectively. The bands shown represent variations resulting
from different interpretation of the data and expected
experimental error. They will be discussed more fully later.

The heat transfer to the nozzle throat using the present
extrapolation method was compared with several convective heat-
transfer theories based on both laminar and turbulent flow (see
figure 14). The partinent equations used for computation are
summarized in Appendix A, The upper group of solid curves shows
the turbulent heat-transfer rate predicted by the theories of
references (1) through (4), using fluid properties corresponding
to the average of the surface temperature and the free-streanm
static temperature., The free-stream static temperature was
computed from the known supply temperature and the assumed
perfect~gas flow at the nozzle inlet. The equation of
Sibulkin (ref. (1)) considers the heat transfer only at the
nozzle throat while that of Bartz (ref. (4)) can be applied to
other regions of the nozzle. The squations of Dittus and
Boelter and of Eckert and Drake (ref. (2)) are relations based
on turbulent pipe flow. The curve of Persh and Lee (ref. (3))
is from a step-wise integration of the boundary-layer momentum
equation which includes the effect of pressure gradient.
Coluccl's results of heat-transfer measurements in a rocket
nozzle (ref. (10)) were fitted with an equation which coincid:cs
with the result of Dittus and Boelter,
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The lower group of curves are approximate solutions based
on laminar flow over a flat plate (ref. (6)) with selected
representative wetted lengths. A wetted length equal teo 2.5
times the throat diameter corresponds to the distance from the
nozzle throat to the beginning of the conical nozzle inlet; six
diameters correspond to the initial burning face of the propel-
lant, and 11.5 diameters corresponds to the burning face of the
propellant at 50 percent burn~out, A more exact method for the
computation of the laminar heat-transfer rate was presented by
reference (5) which included the effect of pressure gradient.
One point was computed by this method assuming a surface tem-
perature equal to 90 percent of free-stream stagnation tem-
perature. This is represznted by the diamond symbol on the

graph.

The computed Reynolds number based on laminar boundary-
layer momentum thickness is approximately 650 at the nozzle
throat, i.2., it is of a magnitude usually associated with the
transition region from laminar to turbulent flow. The present
data support the existence of turbulent flow in the throat region
and appear to be predicted best by the numerical integration of
the boundary-layer momentum eqguation,

The experimental heat-transfer data in thse form of Stanton
number are shown by the two curves Ty and Ty, of figure 14,
The difference between these two curves is dué to the difference
in supply temperature as was shown in figure 5. The divergence
of the experimental data at the higher surface teéemperature is
due to the small temperature differences between the wall and
free-stream temperatures and the resulting large relative error
in (Tg - Ts) used in equation (6) to compute the heat flux,

Accuracy

The accuracy of the present method for extrapolating the
surface temperatures is dependent upon the experimental errors
and the truncation error of the numerical solution which was
discussed earlier. For the numerical scolution on the IBM 7080,
the distance between the two boundaries was divided into five
segments of equal length on a logarithmic scale and time incre-
ments of 0.1 second. Based on past experience of related prob-
lems under similar conditions, 1t was judged that the present
selection of increments would give sufficlently accurate results,

Experimental errors may be divided into two classes: those
which are systematic or determinate and those which are accidental
or indeterminate. The former, which included resistance change
of thermocourle wires due to temperature, were minimized by
calibration at simulated temperatures as discussed earlier.
Indeterminate errors are due to unpredictable effects which are
usually lumped together as deviation from some assumed average.

6
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In the present investigation three significant effects classified
as indeterminate errors affected the accuracy of the data. One
of these was in the insulation of the chamber thermocouple by the
unburned propellant. The result of this effect is indicated by
the divergence of the two temperature curves 28 shown in figure 7.
The error introduced in the Stanton number correliation is shown
by the difference of the Tgy and Tgo in figure 14. The second
effect is the change in cou%act res%stance betwean the embedded
thermocouples and the molybdenum throat insert. Any shifting

of the thermocouple during the run usually results in a sudden
decrease in emf output when compared to the relatively slow rise
of the tempersature being measured., Consequently this effect
could be easily detected by discontinuities in the temperature-
versus-time data recorded. The probability of thermocouple
shifting was decreased by welding the thermocouples directly to
the tapered plug prior to installation. The third effect, which
is characteristic of the nozzle material used, is the fracturing
of the insert by the starting thermal shock. These fractures
appear as longitudinal hairline cracks located in the throat
region and were formed in many of the molybdenum throat inserts
tested. Although in the instrumented nozzle the fractures did
not impinge directly on the thermocouples, local penetration of
the hot gas may have resulted in the high temperatures of some

of the internal points. It is speculated that the departure of
experimental data from computed results (near the end of the run)
as shown in figure 11 was due to local gas flow, 1.e., the
internal thermocouples were heated by hot gas leaking through

the fraciures,

The human factor in drawing the curve through the points of
figure 11 is illustrated in figure 15. The bands shown repre-
sent the spread of curves made by ten independent interpreta-
tions of the data. The resultant scatter at the end points was
incorporated into the numerical solution and the uncertainties
at the throat surface are shown by the cross-hatched areas in
figures 12, 13, and 14,

CONCLUSIONS

A combined experimental and analytical method is given for
obtaining the surface heat-transfer rate at the throat of a
rocket nozzle. Experimental data justify the use of the one-
dimensionagl heat flow analysis. The results are compared with
theoretical predictions and with other available experimental
results. Good agreemsnt is obtained with turbulent heat-
transfer rates computed from the point-by-point solution of the
boundary-layer momentum equation along the nozzle contour.
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Table 1

MATERIAL PROPERTY DATA - MOLYBDENUM

Melting Point: 5200°Rankine = 28880 Kelvin

Emissivity : 6.10 3
Density : 9.9371 gm/cm
Temperature Conductivity Specifig Heat
(deg Kelvin) (cal/cm sec OC) (cal/gm"C)
253 .333 0.065
273 .328 0.065
477 .302 0,065
588 .289 0.064
699 .281 0.064
810 .273 0.064
921 .264 0.065
1033 .256 0.067
1144 .252 0.069
1255 .247 0.071
1366 .243 D.074
1477 .239 0.077
1588 .235 0.080
1699 .231 0.083
1810 .231 0.086
1921 .227 0.090
2032 .227 0.094
2144 222 0.098
2255 .222 0.103
2366 .218 0.108
2477 .218 0.113
2588 .218 0.119
2699 .214 0.124

2810 .214 0.130
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AFPENDIX A

Summary of Theories Used for Heat-Transfer Correlation

Heat transfer was corrslated in terms of Stanton number
which is defined as:

o b N
St PU o Re 5 (A-1)

Computations were based on isentropic flow in the region between
the combustion chamber and the nozzle throat and the following
gas properties obtained from references (8) and (9):

J = 1.25

Cp = .424 Btu/1bOR

R, = 63.173 £t-1b/1bOR

Mo = 4.81 x 10~3 ib/ft-sec

Pr =~ ,607
The values of the convective heat-transfer coefficient, h, were
computed from equation (6). The method for computing the

theoretical values of h are listed as follows:

a. Sibulkin, reference (1) - (applies to nozzle throcat only)

%
S Cer, (V5 (“ﬂ)*
J gucp | 70-3/‘-("*/-*)’/’0 T (A-2)
where: B 2 \k ¥y L ¢
Co =05 TFri/ Ty T/

(A-3)

¥ = ratio of specific heaters
Rg = gas constant, £t2/sec20R
Cp = specific heat at constant pressure, Btu/slug©R

Pr = Prandtl number
A-1
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Po = supply pressure, 1b/£t2
v* = kinematic viscoesity, tt2/sec
To = supply temperature, °©R
Ty = stream temperature, OR
T =T, + Ty, ORr
2
Ty = wall temperature, OR

r* = rgdius of nozzle throat opening, ft
L*¥ = radius of nozzle throat curvature, ft
7 = density at T, lb-sec?/ft?

Uy - local stream velocity

Dittus and Boelter, reference (2)

— -7
St vzes(Fe,) F(A) (A-4)
Pr = Prandtl number

Req= Reynolds number based on local diameter, local
stream velocity, density and viscosity at T.

Colucci, reference (10) - curve drawn through experi-
mental data
—- -2 -

St =.023 (Key) Fr (A-5)
Persh and lLee, reference (3) -~ The Cslhurn form of
Reynolds analogy

c -/ (A-8

57‘ = ?L /Or' /3 )

is used to obtain the heat-transfer coefficient. The local skin
friction coefficient is obtained from its assumed depemdency oOn
the boundary-layer momentum thickness given in reference (3), and
the numerical integration of the boundary-layer momentum equztion.

Bf

Eckert and Drake, reference (2)

L ossr (Re)T
57 F /%(/Zé’r"r_//‘)(ﬁc’d_/g)(ﬁr —‘/)

(A-7)

A-2




f.

g.
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Bartz, reference (4)

ad o8 o./ 09
_ 0026 (' 6\ (29 D,,) (_Aj_,_,) o
571‘ F“, 9 D*o.‘ Ffﬂ»‘ A C* -_’;— A (A—S)

Cp

throat diameter
= vigcosity

= gpecific heat at constant pressure

( Yo = stagnation condition

Pc

C*

e

= chambar presgsure

= gravitational acceleration
= characteristic velocity

= throat radius of curvature

= dimepsionless factor accounting for variation
of p and u values across boundary layer

Cohen and Reshotko, referenca (5)

] X te )
, 21 [ TTa7%)

7= 7V e (St Faw
“

(A-8)
)F)-=/

= Prandtl number

= g@xponent of Prandtl number in Reynolds anazlogy
parameter

el X
Fw oG

Hw

= Reynolds number, Rey =

= dimensionless pressure gradient

= dimensioniess surface coordinate

= ratio of stagnation to free-strean temperatures
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C¢g = local skin-friction coefficient
n = correlation number
Nu = Nusselt number

h. Vaa Driest, reference (6)

-4 - 45
§f = 0332 R % fr

(A-10)

Rey = Reynolds number based on the assumed wetted
length x and the denasity and viscosity computed
at the mean temperature between the surface and

free-~stream.
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